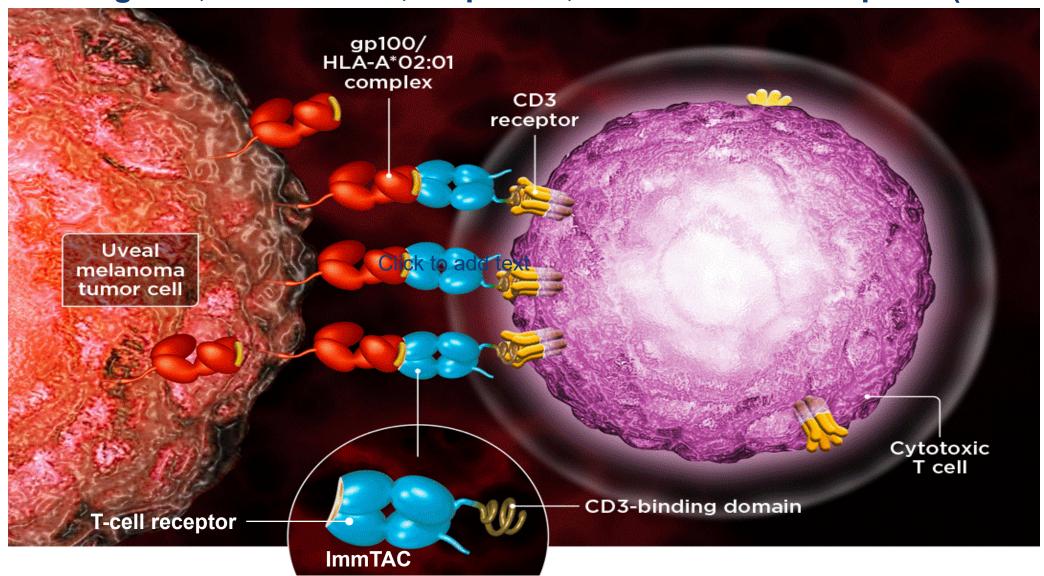
IMMUNOCORE



Forward-Looking Statements

This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Words such as "may," "will," "believe," "expect," "plan," "anticipate" and similar expressions (as well as other words or expressions referencing future events or circumstances) are intended to identify forward-looking statements. Forward-looking statements contained in this presentation include but are not limited to, statements about the Company's proposed regulatory plans for tebentafusp, the efficacy, safety and therapeutic potential of tebentafusp, the expected timing of a BLA review and action date for tebentafusp for the treatment of mUM, the potential approval and commercial launch of tebentafusp for mUM, the design, progress, timing, scope and results of the Company's clinical trials including IMC-C103C, IMC-F106C, IMC-I109V and IMC-M113V, the anticipated achievement of upcoming clinical milestones, the potential benefit of Breakthrough Therapy Designation or Orphan Drug Designation for tebentafusp the design, progress, timing, scope and results of the Company's clinical trials including IMC-C103C and tebentafusp; the potential clinical benefit of the Company's product candidates; the timing and outcome of discussions with regulatory authorities; and the success of any licensing or partnering opportunities. Each of these forward-looking statements involves risks and uncertainties. These statements are based on the Company's current expectations and projections made by management and are not guarantees of future performance. Therefore, actual events, outcomes and results may differ materially from what is expressed or forecast in such forwardlooking statements. Factors that may cause actual results to differ materially from these forward-looking statements include the fact that initial data from clinical trials may not be indicative, and are not guarantees, of the final results of the clinical trials and are subject to the risk that one or more clinical outcomes may materially change as patient enrollment continues and or more patient data becomes available. Additional risks that could cause actual results to differ materially from those in the forward-looking statements are discussed in Immunocore's filings with the U.S. Securities and Exchange Commission, including the "Risk Factors" sections contained therein. Such risks may be amplified by the COVID-19 pandemic and its potential impact on Immunocore's business and the overall global economy. All forward-looking statements contained in this presentation speak only as of the date on which they were made. Except to the extent required by law, Immunocore undertakes no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made.

Certain information contained in this presentation relates to or is based on studies, publications, surveys and other data obtained from third-party sources and Immunocore's own internal estimates and research. While Immunocore believes these third-party sources to be reliable as of the date of this presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third party sources.

Harnessing the immune system to fight disease with targeted, off-the-shelf, bispecific, soluble T cell receptors (TCRs)

Immunocore: Pioneering TCR therapeutics

Leader in off-the-shelf bispecific T-cell engagers

First TCR to demonstrate monotherapy overall survival (OS) benefit in solid tumor

Clinically-validated platform moving to commercialization in mUM¹

Potential first FDA approval for a TCR therapeutic

Pipeline with potential in multiple indications / therapeutic areas

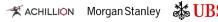
Oncology (tebentafusp, PRAME, MAGE-A4), infectious and autoimmune diseases 5 clinical stage programs

Metastatic uveal melanoma

Our team

Proven track record with over 25 new medicines for patients

Bahija Jallal CEO



IMFINZI, FASENRA, LUMOXITI, SELIQ, QAIV, SAPHNELO

Brian Di Donato CFO & Head of Strategy

David Berman Head of R&D

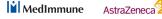
YERVOY, EMPLICITI, LUMOXITI, IMFINZI

Mohammed Dar CMO

MedImmune

VOTRIENT, IMFINZI, LUMOXITI

Andy Hooker VP, CMC & Supply Chain



CIMZIA

JoAnn Suzich Head of Research

SYNAGIS, FLUMIST, VLP technology for HPV vaccines

Mark Moyer Head of Regulatory

YERVOY, OPDIVO, TAXOTERE, ZOLADEX, PLAVIX, JEVTANA, ELOXATIN

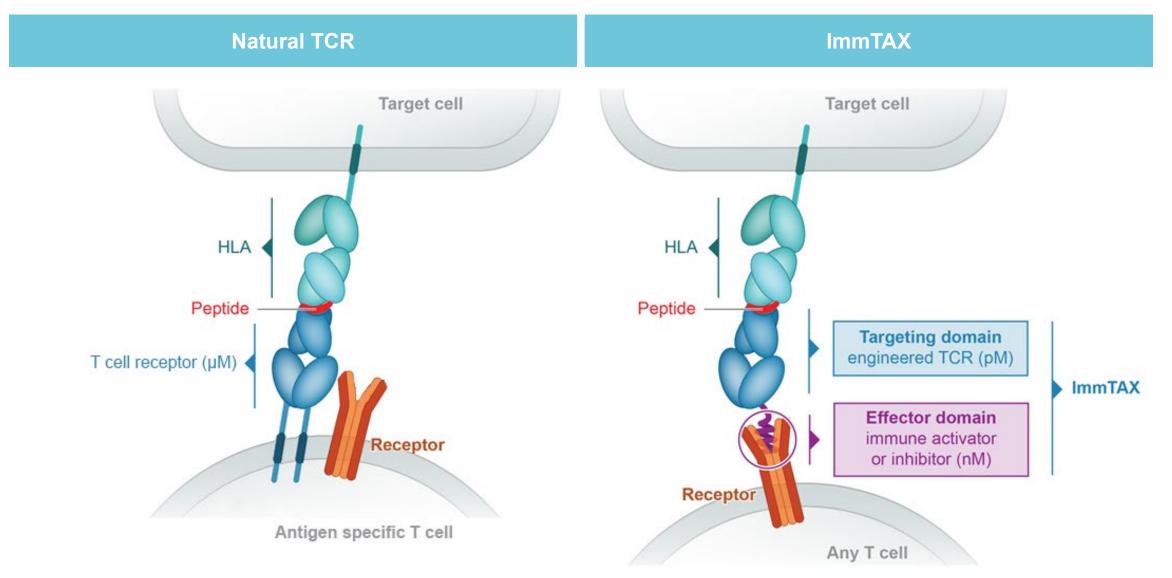
Ralph Torbay Head of Commercial

IMFINZI, TAGRISSO, CALQUENCE, GLEEVEC, TASIGNA, ARZERRA, FARYDAK

Our pipeline

Leading bispecific TCR pipeline with tebentafusp BLA & MAA submissions accepted

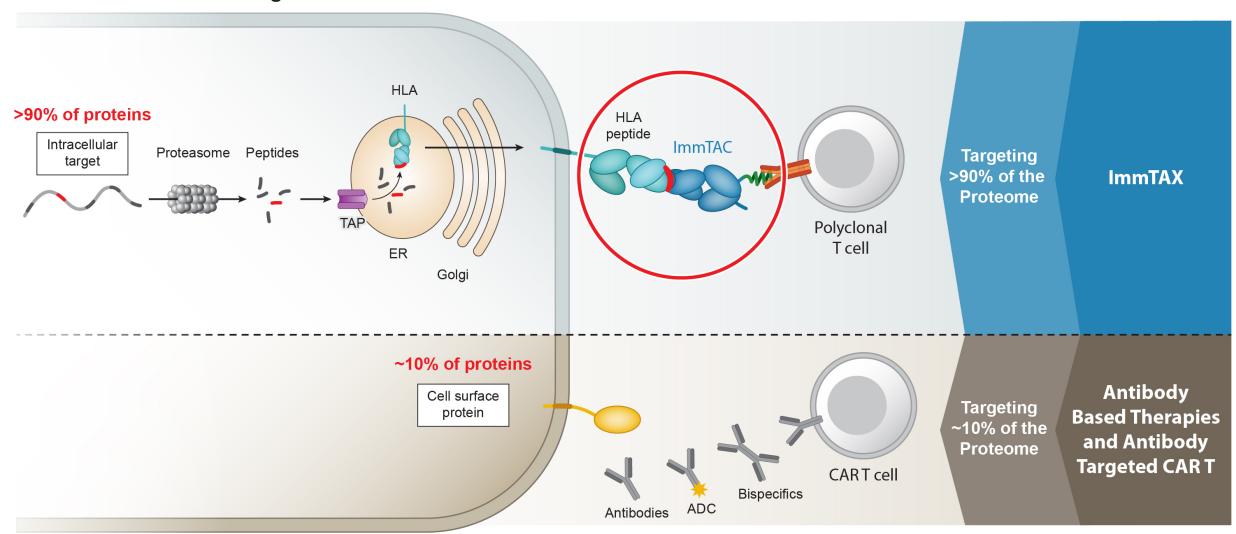
Candidate	Target	Indication	Pre-clinical	Phase 1 / 2	Phase 3	Approved	Anticipated Milestones
Oncology							
Tebentafusp	100	Uveal melanoma					PDUFA Feb. 2022Commercial launch 1H 2022
Tebentalusp	gp100	Cutaneous melanoma					❖ Randomized study 4Q 2022
IMC-F106C	PRAME	NSCLC, breast, endometrial, ovarian, SCLC, melanoma					❖ Ph. 1 initial data mid 2022
IMC-C103C ¹	MAGE-A4	NSCLC, gastric, head & neck, ovarian, synovial sarcoma					✓ Initiated ovarian expansion ❖ Ph. 1 update 2H 2022
Candidate #4	Undisclosed	Multiple solid tumors					
Candidate #5	Undisclosed	Colorectal, gastric, pancreatic					
Infectious Diseas	es						
IMC-I109V	Envelope	Hepatitis B Virus (HBV)					Enrolling Ph. 1
IMC-M113V ²	Gag	Human Immunodeficiency Virus (HIV)					❖ First patient dosing 2Q 2022

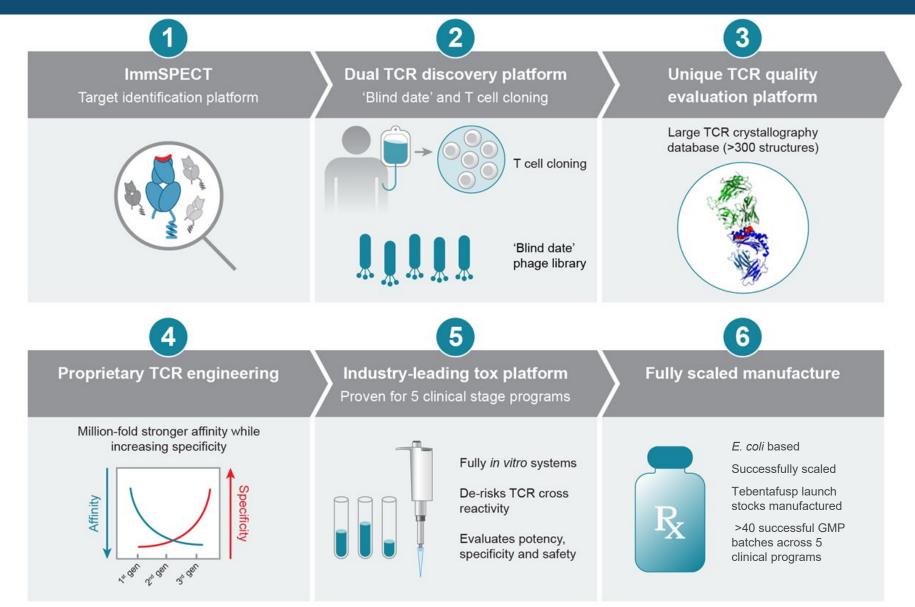

¹ Developed under a co-development/co-promotion collaboration with Genentech. ² Program is wholly owned, development costs being provided by the Bill & Melinda Gates Foundation (BMGF), Immunocore retain all development and commercialization rights in the developed world.

IMMUNOCORE

Technology Platform

We pioneered converting membrane-bound T cell receptors

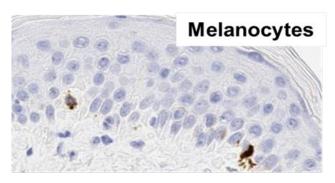

Into soluble, off-the-shelf, bispecific therapeutics (ImmTAX)


TCR therapeutics can target nearly the entire human proteome

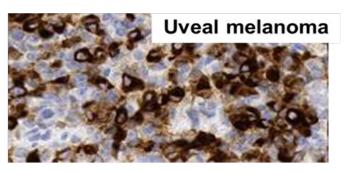
Application to oncology, infectious disease and autoimmune

Target Cell

Seamless suite of proprietary technologies spanning target discovery to clinic




Tebentafusp in Metastatic Melanoma


Tebentafusp (Tebe): First-in-class, off-the-shelf, bispecific TCR

Targeting gp100 protein in melanoma

gp100 protein

Three melanoma clinical trials

IMCgp100-01:

Ph 1 in uveal & cutaneous melanoma¹

Endpoints: safety and activity

IMCgp100-102:

Ph 2 in uveal melanoma²

Second or third line in metastatic disease

Primary endpoint: RECIST ORR

IMCgp100-202:

Ph 3 pivotal in uveal melanoma³

First line metastatic

Primary endpoint: Overall Survival

Metastatic UM:

- HLA-A*0201+
- No prior systemic therapy in the advanced setting
- No prior liver-directed therapy, except surgery
- Any LDH

378 patients Randomized 2:1 **Tebentafusp**

Investigator's Choice (IC):

- Dacarbazine 6%
- Ipilimumab 12%
- Pembrolizumab 82%

Primary endpoint Overall Survival (OS)

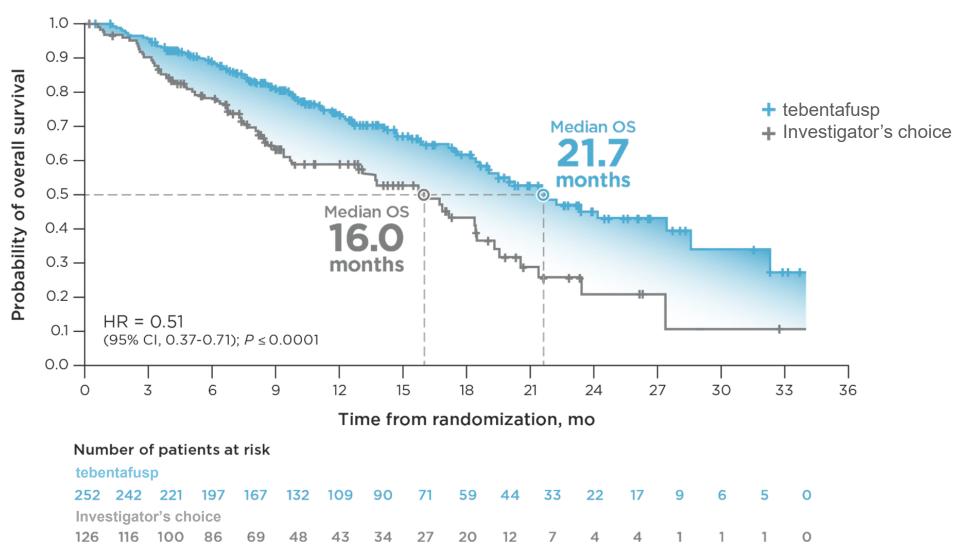
Data cut-off date: October 13, 2020; data snapshot date: January 22, 2021.

Tebentafusp	(n=245)
-------------	---------

	- (
Adverse Event (AE), related*	Any grade n (%)	Grade 3/4 n (%) [†]
Any	244 (99.6)¶	110 (45)**
Cytokine-mediated		
Cytokine release syndrome‡	217 (89)	2 (1)
Pyrexia	185 (76)	9 (4)
Chills	114 (47)	1 (0.4)
Nausea	105 (43)	2 (1)
Fatigue	101 (41)	7 (3)
Hypotension	93 (38)	8 (3)
Vomiting	64 (26)	1 (0.4)
Headache	53 (22)	1 (0.4)
Skin-related		
Rash§	203 (83)	45 (18)
Pruritus	169 (69)	11 (5)
Dry skin	72 (29)	0
Erythema	56 (23)	0

IC (n=111)

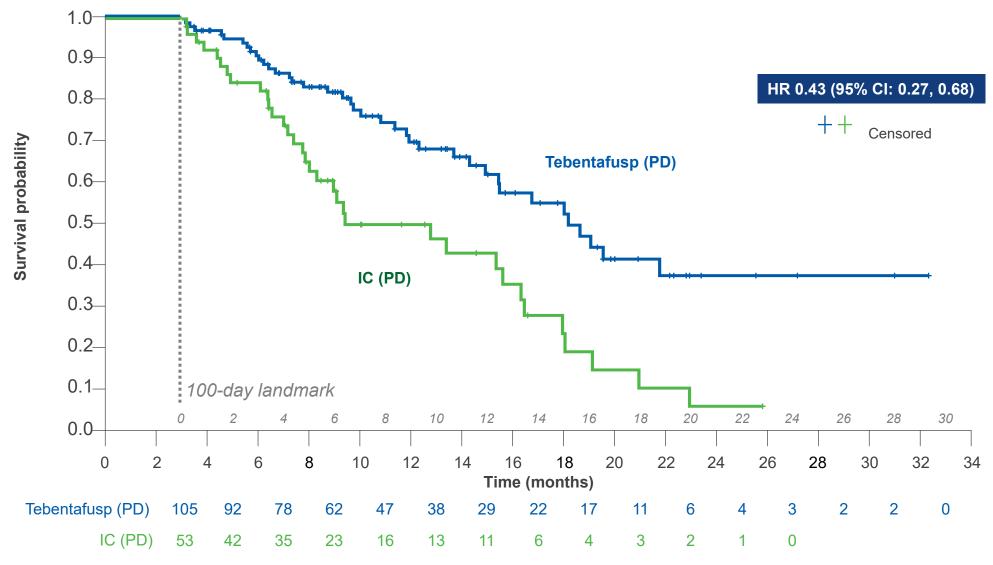
AE, related	Any grade n (%)	Grade 3/4 n (%)
Any	91 (82)	19 (17)
Fatigue	29 (26)	1 (1)
Rash	27 (24)	0
Pruritus	23 (21)	0

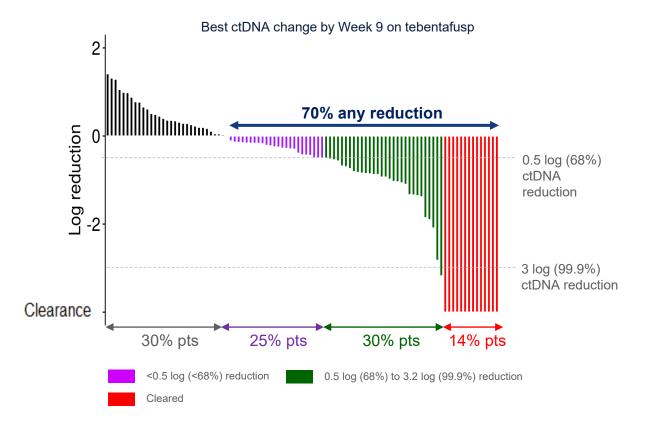

- Majority AEs in first few weeks
- AEs generally manageable; low related discontinuation rate for tebentafusp (2%) vs. IC (4.5%)
- No tebentafusp-related deaths as assessed by the investigators

^{*}Table summarizes treatment related AEs that are present at least 20% any grade; †Other (2-4%) severe AEs in tebentafusp arm include AST, ALT, lipase, lymphopenia, hyperbilirubinemia, hypophosphatemia, hypertension;

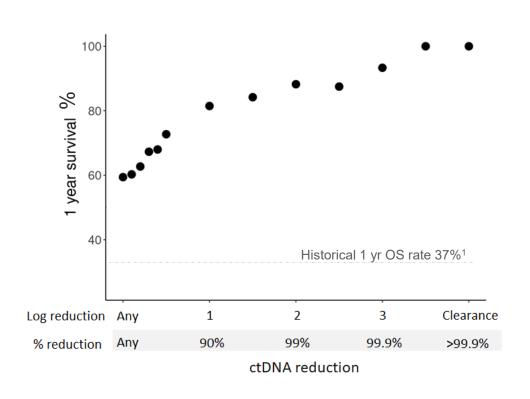
[¶]Includes 1 patient with no related AEs (per Investigator) but with sponsor-adjudicated CRS; **Includes 1 patient with related AEs Grade <3 (per Investigator) but with sponsor-adjudicated Grade 3 CRS;


[‡]Cytokine release syndrome was adjudicated by sponsor according to ASTCT Consensus Grading for CRS (Lee et al. 2019); §Rash is a composite term for a list of skin toxicities of any grade. AE, adverse event

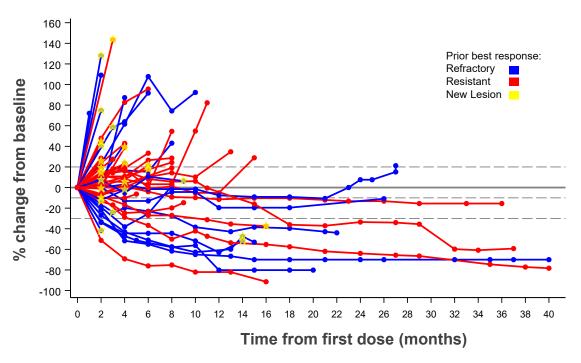

Tebentafusp granted Breakthrough Therapy Designation by FDA



Low gp100 H score < lowest quartile High gp100 H score ≥ lowest quartile



70% evaluable patients had any ctDNA reduction


ctDNA reduction correlates with 1 year OS

ctDNA = circulating tumor DNA

Durable tumor shrinkage in patients who progressed on prior anti-PD(L)1

tebentafusp + durvalumab*

*Study IMCgp100-201: 57 patients in this study received any dose of durvalumab and had a documented best overall response to prior anti-PD(L)1 therapy. Of these 57 patients, 31 received tebentafusp + durvalumab and 26 received tebentafusp + durvalumab + tremelimumab.

Best response to prior anti-PD(L)1: Resistant = best response CR/PR/SD to prior PD(L)1; Refractory = best response of PD to prior anti-PD(L)1

1-yr OS

74%, anti-PD(L)1 <u>naïve</u> tebentafusp monotherapy^

76%, <u>prior</u> anti-PD(L)1 tebentafusp + durvalumab[†]

IMMUNOCORE

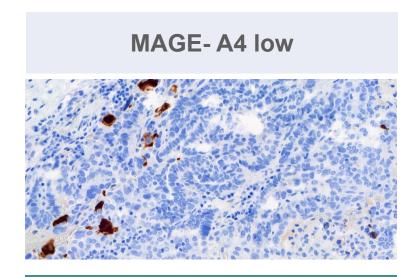
[^] Study IMCgp100-01, n= 49

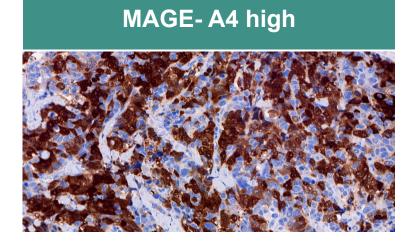
⁺ Study IMCgp100-201, 61 patients received prior anti-PD(L)1 and who received tebentafusp with any dose of durvalumab on this study. Of these 61, 57% patients received tebentafusp + durvalumab and 43% received tebentafusp + durvalumab + tremelimumab.

MAGE-A4 & PRAME

IMC-C103C targeting MAGE-A4, a cancer testis antigen expressed in multiple solid tumors

MAGE-A4 in PDx sensitive and insensitive tumors


Tumor


gp100

MAGEA4

HIGH

expression expression Cutaneous Relative PDx sensitivity melanoma **RCC** Bladder **NSCLC** HCC Gastric Esophageal **SCCHN SCLC TNBC** Endometrial Cervical Ovarian Uveal melanoma

LOW

Phase 1: First-in-Human study of IMC-C103C targeting MAGE-A4

Design

- Weekly IV infusion
- 21-day DLT evaluation period
- Dose escalation decisions based on cohorts of 3-6 patients using mTPI-2 [2]*
- Once a dose has cleared safety review, patients treated for ≥10 weeks at a lower dose can escalate

Eligibility

- Selected advanced solid tumors
- HLA-A*02:01+ (central testing)
- Relapsed / refractory / intolerant of standard therapies
- ECOG 0-1
- Tumor MAGE-A4 by immunohistochemistry (IHC)

Indications

IHC testing

High prevalence of MAGE-A4†

Enroll all comers, retrospective testing

All other indications

Prospective MAGE-A4 confirmation

Objectives

- Primary: Determine MTD / expansion dose
- Secondary:
 - Preliminary antitumor activity
 - Pharmacokinetics
 - Pharmacodynamic markers, including lymphocyte counts and serum cytokines

^{*}mTPI-2, modified toxicity probability interval-2 method

[†] e.g., ovarian and synovial

Dose escalation schema from minimum anticipated biological effect level (MABEL)

	# patients enrolled	Day 1 Dose	Day 8 Dose	Weekly Dose, Starting Day 15	
Φ	2	0.5 mcg	0.5 mcg	0.5 mcg	Initial dose defined by MABEL
Dose	2	1.5 mcg	1.5 mcg	1.5 mcg	No to minimal pharmacodynamic
Fixed	3	4.5 mcg	4.5 mcg	4.5 mcg	activity
ш.	3	15 mcg	15 mcg	15 mog]
	9	15 mcg	45 mcg	45 mcg	Initial pharmacodynamic activity identified
	4	15 mcg	45 mcg	64 mcg	J
Step-Dose	7*	15 mcg	45 mcg	90 mcg]
Step-	7	15 mcg	45 mcg	140 mcg	Strong and consistent
	2	15 mcg	45 mcg	180 mcg	pharmacodynamic activity
	5	15 mcg	45 mcg	240 mcg	

^{*7} patients assigned to the 90 mcg cohort; however 1/7 discontinued after 15 mcg and never received 45 mcg. Steroid premedication has been recommended at biologically active doses and, more recently, has been required when the highest dose is given for the first time;

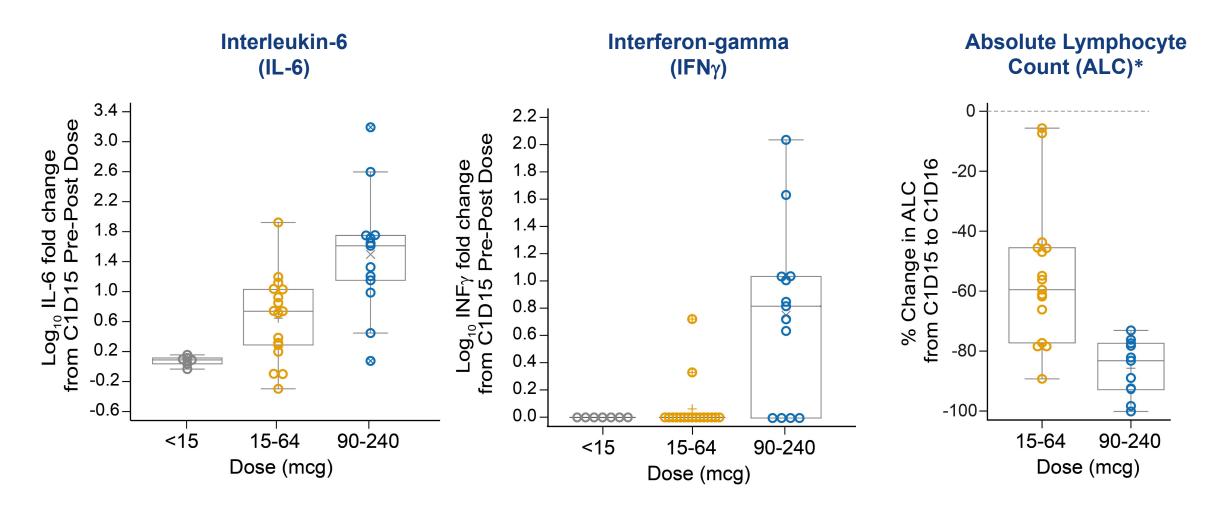
Safety profile manageable and consistent with mechanism of T cell activation

Preferred Term*	0.5-4.5 mcg (n=7)	15-64 mcg (n=16)	90-240 mcg [§] (n=21)	TOTAL (N=44 [†])	
All Grades (trea	atment-related ev	ents in ≥ 20% of t	total patients)		
Chills	-	8 (50%)	13 (62%)	21 (48%)	
Pyrexia*	2 (29%)	7 (44%)	12 (57%)	21 (48%)	
Cytokine release syndrome [‡]	1 (14%)	4 (25%)	11 (52%)	16 (36%)	
Headache	1 (14%)	6 (38%)	7 (33%)	14 (32%)	
Nausea	1 (14%)	6 (38%)	6 (29%)	13 (30%)	. No voleted AC
Hypotension*	-	6 (38%)	5 (24%)	11 (25%)	No related AE
Fatigue	1 (14%)	4 (25%)	5 (24%)	10 (23%)	treatment disc
Grade 3-4 (tre	atment-related ev	ents in ≥ 5% of to	otal patients)		 No related AE
Neutropenia	-	1 (6%)	7 (33%)	8 (18%)	
Lymphocyte count decreased	1 (14%)	1 (6%)	2 (10%)	4 (9%)	
ALT increased	-	1 (6%)	1 (5%)	2 (5%)	
AST increased	-	1 (6%)	1 (5%)	2 (5%)	
Headache	-	1 (6%)	1 (5%)	2 (5%)	

E led to continuation

[§]Two DLTs at 240 mcg: Grade 3 AST increased (rapidly resolved; patient continued at 240 mcg until disease progression) and Grade 3 CRS (resolved; patient currently on 140 mcg)

Eled to death


^{*}Includes events reported as a sign/symptom of CRS

^{*}One patient enrolled at 90 mcg and 9 months after discontinuing study treatment was re-enrolled at 180 mcg

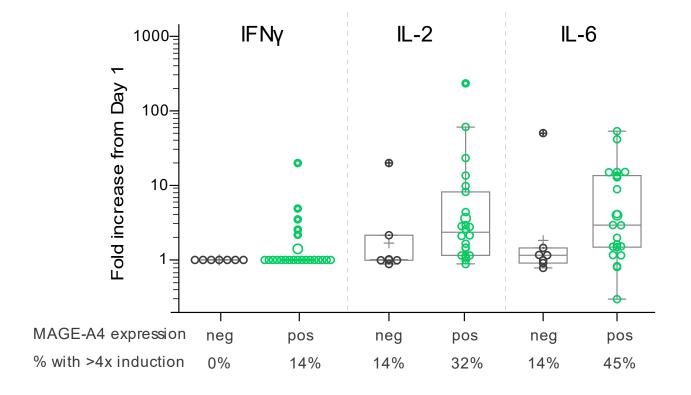
[‡] Cytokine release syndrome (CRS) was graded by the Investigators using ASTCT criteria (Lee et al. 2019) [3]; all other events were graded using NCI CTCAE v5.0.

Consistent and robust evidence of T cell activity at ≥ 90 mcg IMC-C103C

Assessment after maximal dose (Day 15)

Concentrations < LLOD were set to half LLOD for purposes of deriving fold change Fold increase compares pre-dose to maximum post-dose (4hr, 8hr, and 24hr timepoints) 24 patients evaluable (pre and post-dose cytokine results available for the Day 15 dose)

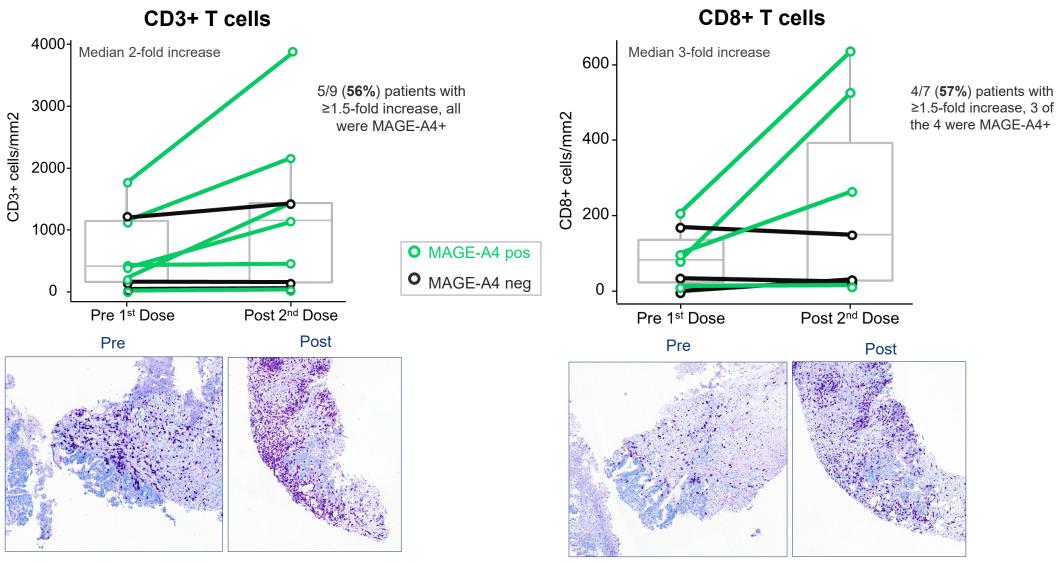
^{*} Day 16 ALC was only analyzed following introduction of intrapatient dose escalation; therefore, not collected in first cohorts.



Cytokine induction primarily in patients with MAGE-A4 positive tumors

Assessment after initial dose, 15 mcg (Day 1)

MAGE-A4 positive (H-score > 0)


MAGE-A4 negative (H-score = 0)

- IFN_γ induction only observed in patients with MAGE-A4 positive tumors
- Median IL-2 and IL-6 induction higher in patients with MAGE-A4 positive tumors

Concentrations < LLOD were set to half LLOD for purposes of deriving fold change Fold increase compares pre-dose to maximum post-dose (4hr, 8hr, and 24hr timepoints) 29 patients evaluable (15 mcg on Day 1, pre and post-dose cytokine results and MAGE-A4 results available)

Increased T cell infiltration into MAGE-A4 positive tumors

Biopsy after two doses (15 mcg on Day 1 and 45 mcg on Day 8)

Clinical activity in MAGE-A4 positive ovarian and HNSCC

Majority of evaluable patients had low MAGE-A4 expression

Efficacy evaluable by MAGE-A4 IHC status

all indications at 90-240 mcg

	Negative or NE MAGE-A4	Positive MAGE-A4	H-Score
HNSCC	-	1	285
Esophageal	-	1	175
Urothelial	-	1	3
Ovarian*	7	8	median 35 (range 7-128)
Total	7	11	

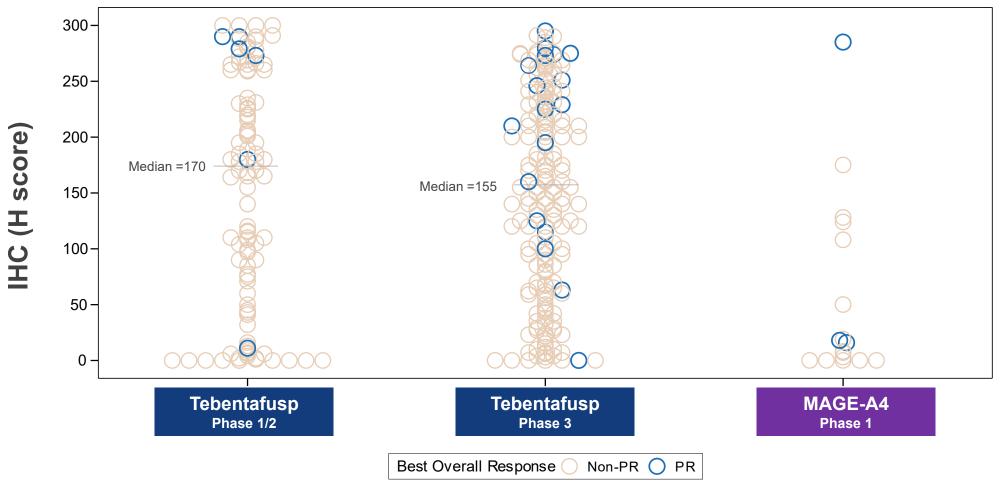
^{* 17} ovarian patients treated at 90-240 mcg; 15/17 efficacy evaluable and 2/17 (both MAGE-A4 negative) not yet efficacy evaluable. The 15 efficacy evaluable include: MAGE-A4 negative (n=5), not evaluable (NE) by IHC (n=2), and MAGE-A4 positive (n=8)

Clinical activity in ovarian and HNSCC

Indication	H-Score	Dose	Response	DOR
HNSCC	285	240 mcg	Confirmed PR [^] (ongoing)	2+ mo
Ovarian	19	140 mcg	Overall TL reduction (-44%) but new lesions	
Ovarian	7	140 mcg	Overall TL reduction (-81%) but new lesions	
Ovarian	18	90 mcg	Confirmed PR (ongoing)	4.4+ mo
Ovarian	16	15 mcg	Confirmed PR	8.3 mo

TL, target lesions

- Of 11 MAGE-A4 positive (all indications), 4 had significant tumor shrinkage including 2 confirmed PR
- Of 2 high MAGE-A4 positive, 1 confirmed PR (HNSCC)
- Durable partial responses, includes low and high MAGE-A4 expression



HNSCC, Head and neck squamous cell carcinoma

[^] confirmed after the presentation data cut-off date

Enrichment of tebentafusp RECIST PRs at higher gp100 expression

In Phase 1, most MAGE-A4 patients to date have low or no MAGE-A4 expression

H score: % of tumor cells with 1+, 2+ or 3+ intensity
MAGE-A4 Phase 1 includes 16 efficacy evaluable patients who were evaluable by IHC (90-240 mcg) and single ovarian patient with PR (15 mcg)

IMC-C103C now demonstrated safety, MoA and clinical activity

Only clinical off-the-shelf candidate against MAGE-A4

- Manageable safety profile (primarily cytokinemediated)
- Consistent and robust biomarkers of T cell activation
- Durable PRs in ovarian carcinoma, even with low MAGE-A4 expression, and a confirmed partial response in SCHNN
- Phase 1 study ongoing in multiple solid tumors
- Initiated first expansion arm in high grade serous ovarian at 140 micrograms

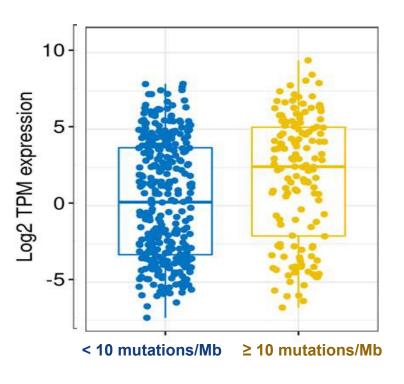
Potential for > 75K patients/ yr (G7)

		Annual Metastatic Patients MAGE-A4+ & HLA-A*02:01		
		US	G7	
NSCLC	Squamous	8.5k	21k	
NSCLC	Adeno	6.5k	15k	
Ovarian		3.5k	8k	
SCCHN		3k	8k	
Gastric + Esoph Adeno		2k	7.5k	
Bladder		2k	5.5k	
Esophage	al Squamous	1k	5.5k	
Select Others		5k	13k	

IMC-F106C targets PRAME, a negative prognostic marker in solid tumors

Expressed in PDx sensitive and insensitive tumors

Tumor


gp100

PRAME

HIGH

expression expression Cutaneous Relative PDx sensitivity melanoma **RCC** Bladder **NSCLC** HCC Gastric Esophageal **SCCHN** SCLC **TNBC** Endometrial Cervical Ovarian Uveal melanoma

Expressed in low and high TMB tumors (NSCLC)

TMB: tumor mutational burden

LOW

PRAME is largest cancer-testes antigen opportunity

Ongoing Phase 1 study

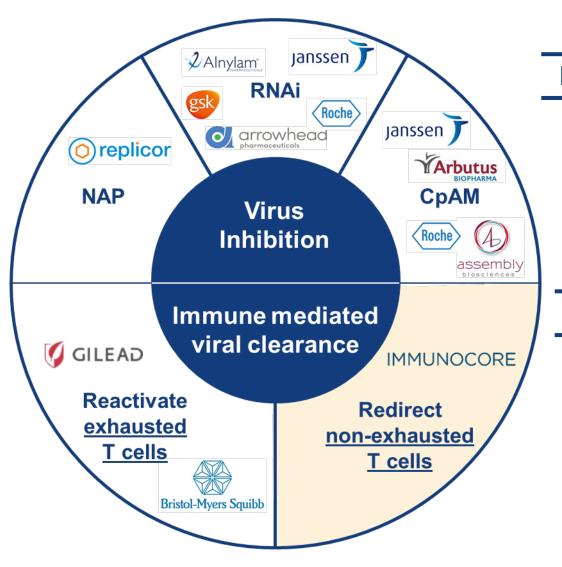
- First, and only, off-the-shelf therapeutic against PRAME intracellular protein
- 39 patients enrolled in Phase 1 doseescalation study*
- Biomarkers indicate having achieved biologically active doses
- Initial Phase 1 data expected mid-2022

Potential for >150,000 patients/ yr (G7)

		Annual Metastatic Patients PRAME+ & HLA-A*02:01		
		us	G7	
NSCLC	Adeno	18.5k	42k	
NSCLC	Squamous	13.5k	32.5k	
Ovarian		7.5k	17k	
Small Cel	Small Cell Lung Cancer		16.5k	
Breast	Total	5.5k	14k	
Diedst	TNBC	2.5k	5.5k	
Endometrial		5.5k	11k	
Cutaneous Melanoma		5k	10.5k	
Select Others		10.5k	33.5k	

^{*}As of December 16, 2021

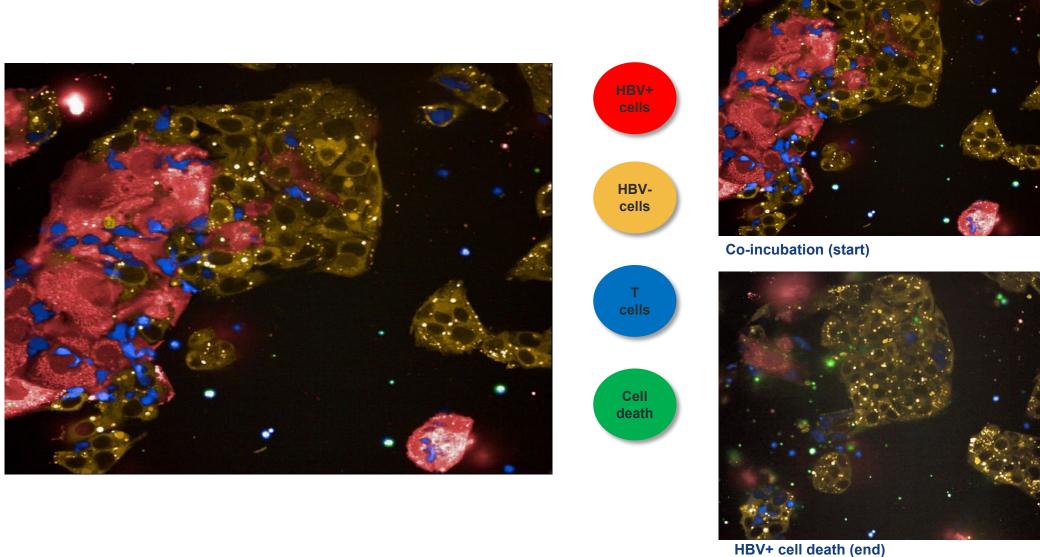
Validation of ImmTAC platform beyond gp100



Immunocore intends to present additional clinical data across all three ImmTAC programs in 2022

Potential for functional cure in chronic viral diseases

Our unique approach for functional cure of chronic HBV


Key advantages of redirecting non-exhausted T cells

- Same CD3 MoA validated in oncology
- Independent of natural T cell reactivity to Hep B
- Goal is functional cure with finite treatment

Mass-spectrometry antigen discovery engine for HBV

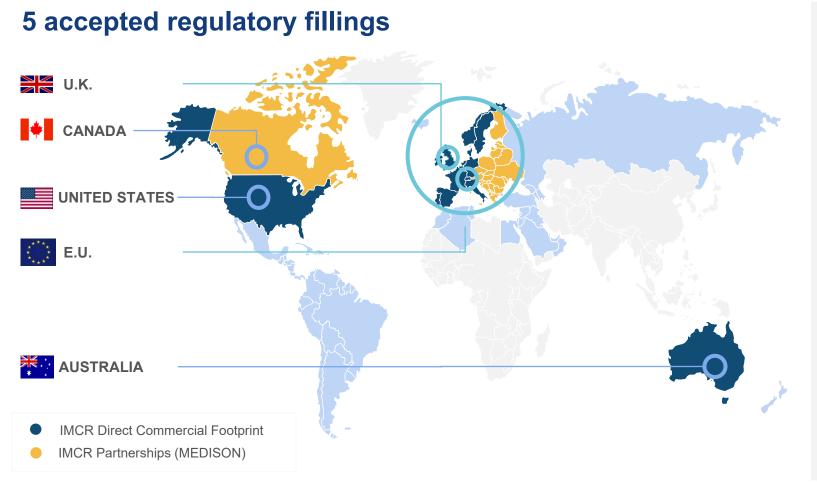
- Pipeline funnel (e.g., conserved sequences, pHLA presentation/stability, mimetic risk)
- Seven optimal targets identified from envelope, core capsid, and polymerase

Highly specific killing of cells with integrated HBV DNA

Functional cure program for HIV with goal of eliminating HIV reservoirs

Elimination of Latently HIV-infected Cells from Antiretroviral Therapy-suppressed Subjects by Engineered Immune-mobilizing T-cell Receptors

Hongbing Yang¹, Sandrine Buisson², Giovanna Bossi², Zoë Wallace¹, Gemma Hancock¹, Chun So¹, Rebecca Ashfield², Annelise Vuidepot², Tara Mahon², Peter Molloy², Joanne Oates², Samantha J Paston², Milos Aleksic², Namir J Hassan², Bent K Jakobsen² and Lucy Dorrell¹

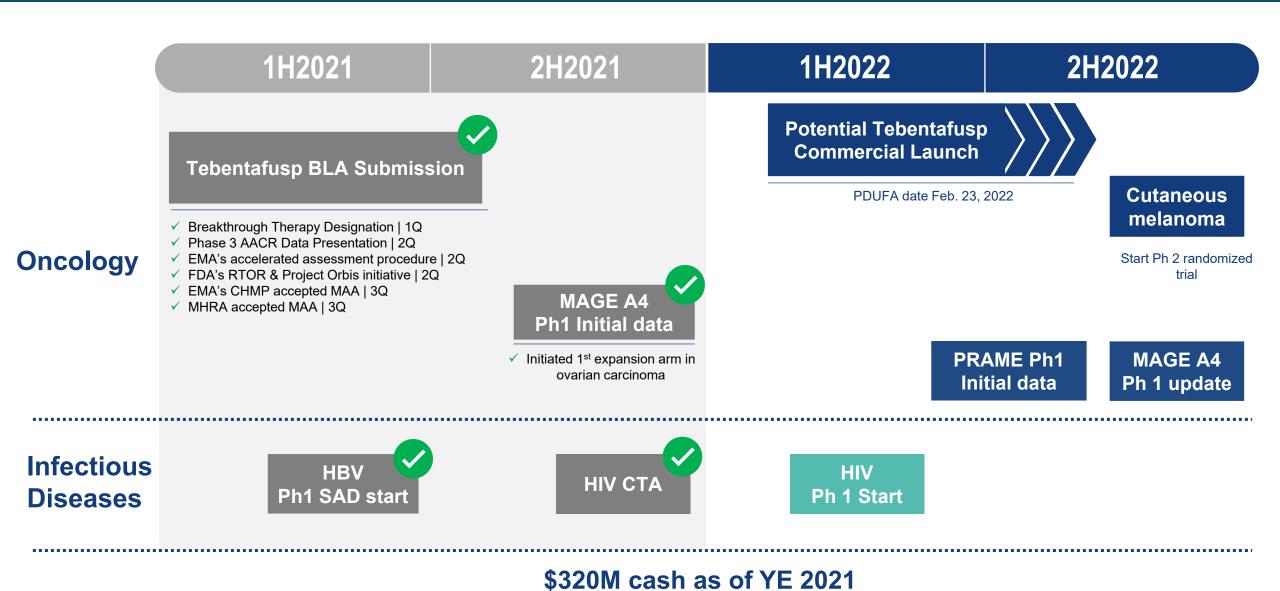

- Same MoA as tebentafusp, but optimized for low target viral peptide presentation
- Bypasses exhausted T cells
- Targets highly conserved & functionally constrained viral epitopes
- Active in ex vivo assays of infected CD4+ T cells from ART-treated HIV patients
- Soluble format access to tissue reservoirs

IMC-M113V CTA accepted in 2021

Tebentafusp Launch Readiness & Upcoming Portfolio Milestones

Our ambition: transform the lives mUM patients around the world Global regulatory acceptances

- 200+ patients on early access program
- **US** launch-ready
- Accelerated review in EU


and Israel

+22 countries
in partnership with MEDISON in
Canada, Central Eastern Europe,

~1,000 patients / year in US and initial priority European markets¹

Portfolio milestones

IMMUNOCORE

Immunocore is the most advanced TCR company

First clinically validated TCR platform with survival benefit

5 clinical-stage programs

Tebentafusp PDUFA 2/2022, EU & UK MAA submissions accepted

Multiple value inflection points over the next 12 months

IMMUNOCORE

